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We study perturbations of the Erdös–Renyi model for which the statistical
weight of a graph depends on the abundance of certain geometrical patterns.
Using the formal correspondance with an exactly solvable effective model, we
show the existence of a percolation transition in the thermodynamical limit and
derive perturbatively the expression of the threshold. The free energy and the
moments of the degree distribution are also computed perturbatively in that
limit and the percolation criterion is compared with the Molloy–Reed criterion.
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1. INTRODUCTION

Random graphs were introduced more than forty years ago by mathema-
ticians and have proved since then to be a very useful and versatile concept.
The most studied example is the Erdös–Renyi model, (5) where the edges are
independent. Balanced with the simplicity of its definition, the richness and
deepness of mathematical results are really fascinating.

On the other hand, there is evidence that the Erdös–Renyi model is a
poor idealization of real networks, those which pop out naturally in sociol-
ogy, biology, communication sciences,... . For instance, the degree distribu-
tion (i.e., the statistics of the number of edges incident at a vertex) of most
of the real life examples exhibits statistical, scale-free, properties very far
from the poissonian behavior predicted by the Erdös–Renyi model. (1, 4)

Many random graph models are now on the market, some consructed
ad hoc to reproduce certain desired features needed to fit real data, some



constructed according to general principles. Belonging to the second category,
the Molloy–Reed model (6) concentrates, inside the space of all labeled graphs
with uniform probability, on the subspace of graphs with an arbitrarily given
degree distribution. Within this model, many relevant quantities can be
computed analytically, and there is a general percolation criterion given in
terms of cumulants of the edge degree distribution. Another general class of
random graphs is the so-called Markov graph model (see, e.g., refs. 10
and 11), in which short-range correlations between edges are introduced.

Our aim is to study another family of random graphs, with longer
range correlations, for which explicit computations are also possible. The
idea is roughly as follows. Suppose that to each graph G one assigns a
weight u(G). From the weight u one can construct another weight w(G)=
;GŒ … G u(G) where the sum is over graphs GŒ with the same vertex set as G
and edge set included in that of G. Conversely, from any weight function w
one can extract a unique weight function u, but the expression of u in terms
of w involves minus signs.

We shall introduce a model for which the weight u is a counting func-
tion for certain structures on graphs. See, for instance, ref. 9 for a slightly
different approach of a similar problem, and ref. 12 for a study of nonlocal
interactions. This weight u has two further properties: first it is permutation
invariant, i.e., the weight of a graph does not depend on the labelling of its
vertices, and second it factors over connected components, i.e., the weight
for a graph with several connected components is the product of the weight
of each component. Note that by standard combinatorial arguments, these
two properties are inherited by the weight w.

Then we study the thermodynamic finite connectivity limit, when the
size of the system (i.e., the number of vertices of the graph) becomes large
but the average number of neighbors of any given vertex has a fixed finite
value. In this regime, the relevant features of the weights u and w are
encoded in two tree generating functions, u and w respectively.

The idea is that because u counts less objects than w (which is not true
for arbitrary w because then u does not have a simple combinatorial inter-
pretation in general), the generating function u has better convergence
properties than the corresponding generating function w. We shall make
the (crucial) assumption that the first singularity in the generating function
of w can be obtained from the functional relation that ties it to the gener-
ating function of u, without having to know the singularities of the gener-
ating function for u itself. This is certainly true, as we shall recall later, for
the Erdös–Renyi model. It is also true order by order in perturbation
theory around the Erdös–Renyi model for the models we introduce. We
shall have little to say analytically on non-perturbative properties, but the
numerical simulations are encouraging.
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Under this assumption we are able to give expressions for the free
energy, the size distribution of connected components and for the percola-
tion criterion and size of the giant component when it exists. The expres-
sions are not very explicit, because they involve the function u, which is
very complicated in terms of the original parameters of the model. But we
show how to perform explicit perturbative computations of the physical
quantities. We also introduce an effective model for which the relationship
between u and u is directly computable, and we illustrate these computa-
tions on three easy examples.

Our motivations are the following. First the models we study form a
natural and reasonnably manageable family of random graph models. Our
point is to emphasize the connection with quantum field theory. We do not
claim that the relation is very deep, but many random graph phenomena
have quantum field theory counterparts, and quantum field theory gives
a very convenient language and insight. Second, one of the interests of
studying models with nontrivial degree correlations is that attacks (see, e.g.,
refs. 7 and 8) automatically induce such features, even if they were absent
to begin with. Third, at a more basic level, we can contrast with the
Molloy–Reed model. This is useful for the purpose of general comparison,
but especially because heuristic arguments, always based on non-explicit
assumptions, allow to recover the Molloy–Reed percolation criterion
whitout using the particular hypothesis of the Molloy–Reed model, thereby
suggesting that the Molloy–Reed percolation criterion has a much wider
range of validity. This is probably wrong, and the model solved in this
paper is definitely not in this range.

2. THE MODEL

After recalling the elementary graph theoretic definitions, we present
our basic assumptions. We use the framework of statistical mechanics, i.e.,
we assign to each labelled graph of size N a weight (real positive number),
which we use as an unnormalized probability distribution. For the Erdös–
Renyi model, the weight is simply pE(G)(1 − p)

N(N − 1)
2 − E(G) where E(G) is the

number of edges of G. We shall choose a weight function that depends on
more detailed local features of the graph, namely the abundance of certain
geometric motifs.

2.1. A Few Definitions and Notations

Simple Unoriented Graphs, Connected Graphs, Trees. A (simple
unoriented) graph G is a couple (V, E) where V ] ” is the vertex set and
E … {{i, j}; i, j ¥ V, i ] j} is the edge set. If V={1,..., N} for some integer N,
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then G is called a labelled graph. The set of labelled graphs of size N is
denoted GN.

If G is a graph, we denote by V(G) the vertex set of G or the cardinal
of this vertex set, depending on the context, i.e., whether a set or a number
is expected at that place.2 Similarly, E(G) will denote either the edge set of

2 This should cause no confusion, though from a fundamental point of view, a number is a set
as well.

G or the cardinal of this edge set.
A connected component of G is a minimal graph (VŒ, EŒ) with VŒ … V

such that if (i, j) ¥ VŒ × V and {i, j} ¥ E then j ¥ VŒ and {i, j} ¥ EŒ.
A connected graph is a graph which has only one connected component.
A circuit of G of size s is a sequence (i1,..., is) of distinct vertices with

s \ 3 such that {i1, i2},..., {is − 1, is} and {is, i1} are edges.
A tree is a connected graph without circuits, and the set of labelled

trees of size N is denoted by TN.
If {i, j} is an edge of G, we say that i and j ¥ V are neighbours in G.

The number of neighbours of a given vertex i ¥ V in a graph G, also called
the degree of G at vertex i, is denoted li(G), or li when there is no
ambiguity. It is the number of elements of E in which i appears.

Adjacency Matrix of a Graph, Operations on Matrices. The
adjacency matrix A(G) (or simply A) of a labelled graph G ¥ GN is the N by
N matrix defined by A i, j=1 if {i, j} is an edge of G, A i, j=0 else. Note
that the set of adjacency matrices is the set of symmetric 0, 1 matrices with
vanishing diagonal elements.

The sum of all elements of any matrix M will be written ||M|| —

;i, j Mi, j. If M is the adjacency matrix A(G) of a graph G, 1
2 ||M|| is E(G),

the number of edges of G.
The sum of all diagonal elements of a square matrix M is the trace of M,

written Tr(M) — ;i Mii. Note that 1
2 Tr(A(G)2) is again equal to E(G).

2.2. Probability Distribution, Partition Function

To emphasize the similarities between the random graph model
studied in this paper and quantum field theory, we split the weight of
graphs in a product of a free part and an interacting part. The free weight
is w0(G) — qE(G) where q ¥ ]0, +.[. For later convenience, we also intro-
duce p=q/(1+q) ¥ ]0, 1[. The interacting part is wI(G) — eSI(G), where

SI(G) — C
k

tk

2k
Tr A(G)k+C

k

sk

2
||A(G)k||.
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The full weight is w(G) — w0(G) wI(G). The normalization factor included
in the definition of the partition function

ZN — (1 − p)
N(N − 1)

2 C
G ¥ GN

w(G)

is chosen in such a way that ZN can be expressed as an average over
Erdös–Renyi weights:

ZN=OeSI(G)PER(p),

where ER(p) assigns probability pE(1 − p)
N(N − 1)

2 − E to any graph on N ver-
tices with E edges. We view w0 as describing a gas of independent edges
(the Erdös–Renyi model), and SI as describing the interactions between
edges, the tk’s and sk’s being arbitrary real parameters that regulate the
abundance of certain local geometric features of G. Note that if G is made
of several connected components, G1,..., Gl, SI(G)=SI(G1)+ · · · +SI(Gl),
so that wI factors as a product over connected components. This is also
true of w0. This multiplicativity of the weight plays a crucial role to sim-
plify the analysis below. Another striking feature is that w(G) is invariant
under permutations of the vertex set. Many other interactions with this
property could be incorporated, for instance by including products of
traces and norms into the interaction, however these would break the mul-
tiplicativity property. The ‘‘simple’’ multiplicative model does not seem to
be exactly solvable, and we have to rely on perturbation theory to make
explicit computations. Even the ‘‘trival’’ case when all parameters except,
say, s3 vanish is already complicated enough (see also ref. 9 for a study of
the case where all paramaters but t3 vanish). This is why we insist on
keeping the two properties: multiplicativity and permutation invariance.

The above model is perfectly well defined for all parameter values as
long as N is finite. However, we shall be interested in taking a large N limit
such that the average degree is a fixed number (so that the number of edges
is proportional to N). This will impose some constraints, see below.

Our model is a cousin of the matrix models. For instance in hermitian
matrix models, the averages are taken not over the discrete set GN of adja-
cency matrices but over the continuous set HN of hermitian matrices. The
group of linear transformations preserving hermiticity is the unitary group,
which plays a role analogous to the permutation group for our random
graph models. A case abundantly studied in the litterature is when the par-
tition function reads

ZN=F
HN

dH e−NS(H),
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with S(H)=S0(H)+SI(H), S0(H)=1
2 Tr(H2), SI(H)=;k

gk
2k Tr(Hk), and

dH=< dHii <i < j d Re(Hij) d Im(Hij). These choices ensure that dH e−NS(H)

is invariant under the transformation H Q UHU−1 when U is a unitary
matrix. Note that the trace and norm of a matrix are permutation invari-
ant, but only the trace is unitary invariant. Many quantities have been
computed analytically for these matrix models. The introduction of pro-
ducts of traces in the matrix model action does not break unitrary symmetry,
and an analytic solution would have important applications. However the
resulting models are much more difficult. For our random graph models,
the presence of products of traces and norms in the action is incompatible
with factorization over connected components and this explains why they
are much more complicated, but the meaning of factorization is not clear in
the context of matrix models.

2.3. Examples

Before elaborating further on this model we give a few examples in
order to show what kind of objects appear in SI(G) and eSI(G).

For example, ||A(G)k||=;1 [ i1,..., ik+1
ai1i2

· · · aikik+1
is the number of

walks with k steps on G, and Tr A(G)k is the number of closed walks on G,
that is walks whose first and last vertices are the same. Note that these
walks are not necessarily paths (one may have ij=ijŒ as long as these two
vertices are not consecutive on the walk). Figure 1 summarizes the
topologies corresponding to these walks for a few small values of k.

When expanding eSI(G) in powers of the tk’s and sk’s, one is led to deal
with products of norms and traces, each of these having the interpretation
just depicted above. In terms of geometrical motifs, these products are the
superpositions of elementary, first order, motifs. So even if all but a finite
number of the tk’s and sk’s vanish, the sizes of the corresponding motifs

k=3

Trace Norm

k=2

k=4

Fig. 1. Illustration of the walks on k steps appearing in SI(G).
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become arbitrarily large as the order of the expansion increases. Yet,
a simplification occurs from the fact that, unlike the first order motifs
which are connected by principle, these walks may contain several, uncor-
related, connected components. In the following section, we show how to
deal with this simplification. In the next one, we give more details on the
graphical interpretation of the expansion of eSI(G) and present a procedure
to reorganize it in the purpose of explicit computations.

3. TWO COMBINATORIAL FORMULAE FOR THE PARTITION

FUNCTION

In this section, we shall derive two formulæ related to exponentiation
in combinatorics.

3.1. Connected Components

Suppose we consider the grand canonical partition function

X=C
G

w(G)
V(G)!

zV(G)

as a power series in z: this is a formal sum over all graphs of any size, from
which ZN can be recovered as

ZN=(1 − p)
N(N − 1)

2 N! G
dz

zN+1 X(z)

where for the time being, the symbol ? dz
zN+1 is not viewed as a real contour

integral, but simply as the operation of taking the term of order N in the
z expansion of a formal power series. If G has l connected components
G1,..., Gl, we observe that

w(G)
V(G)!

zV(G)=
1

(; l
k=1 V(Gk))!

D
l

k=1
qE(Gk)wI(Gk) zV(Gk).

Summing over G is the same as summing over the connected components.
Up to now the vertices of the Gk were labelled as subgraphs of G. Thanks
to permutation invariance, one can instead sum over abstract finite
sequences of l=1, 2,... labelled connected graphs but weight the terms in
the sum by a combinatorial factor

1
l!

(; l
k=1 V(Gk))!

<k V(Gk)!
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to take into account all possibilities to order them and to label the union of
their vertex sets from 1 to ;k V(Gk). Then X=eW where W=;c

G
w(G)
V(G)! zV(G)

— ;n
Wn
n! zn is defined exactly as X except that the sum is only over con-

nected graphs (this is what is meant by the symbol ;c
G ). The main formula

of this section, the first exponential formula, relates ZN and W(z) as

ZN=(1 − p)
N(N − 1)

2 N! G
dz

zN+1 eW(z). (1)

3.2. Reorganization of the Perturbative Expansion

The case when tk=sk=0 for all k corresponds to the Erdös–Renyi
model. The probability of a graph only depends on the number of its edges,
and many quantities such as degree distributions, component distributions
and percolation threshold take a simple form. When one or more of the
tk’s and sk’s are not vanishing, the finer structure of the graph becomes
relevant, and this will be the case of interest in this paper.

Let us fix G and start from the expansion of eSI(G) in powers of tk’s
and sk’s. This gives a linear combination of terms of the form:

D
k

((Tr A(G)k)mk ||A(G)k||nk).

If we expand each matrix product, such a term becomes a sum of products
of matrix elements of A(G) of generic form A(G)i1 j1

A(G)i2 j2
· · · A(G)in jn

and we may assume that i1 ] j1,..., in ] jn because otherwise the product is
0 for any (simple graph) adjacency matrix. On the other hand, to any
sequence i1 j1 · · · in jn with i1 ] j1,..., in ] jn, we may associate a graph H
with vertex set [1, N] and edge set {{i1, j1},..., {in, jn}}. The product
A(G)i1 j1

A(G)i2 j2
· · · A(G)in jn

vanishes unless all edges of H are edges of G,
in which case it has value 1.

With this observation in mind, we define eSI(G) by keeping, in the
expansion of eSI(G), only those terms A(G)i1 j1

A(G)i2 j2
· · · A(G)in jn

such that
{{i1, j1},..., {in, jn}} exhausts the edge set of G (maybe with repetitions).
Then by definition,

eSI(G)= C
H, E(H) … E(G)

eSI(H) ,

where the sum is over all graphs on the same vertex set as G whose edge
set is a subset of that of G. The reciprocal formula is given by eSI(H) =
;G, E(G) … E(H) (−)E(H) − E(G) eSI(G) and the multiplicative property of eSI(G)
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ensures that eSI(H) is also multiplicative: if H has l connected components
H1,..., Hl,

eSI(H) =eSI(H1) · · · eSI(Hl) .

Now

ZN= C
G ¥ GN

(1 − p)
N(N − 1)

2 − E(G) pE(G)eSI(G)

= C
G ¥ GN

C
H, E(H) … E(G)

(1 − p)
N(N − 1)

2 − E(G) pE(G)eSI(H)

= C
H ¥ GN

C
G, E(G) ‡ E(H)

(1 − p)
N(N − 1)

2 − E(G) pE(G)eSI(H) .

For fixed H, ;G, E(G) ‡ E(H) (1 − p)
N(N − 1)

2 − E(G) pE(G)=pE(H), and we find that

ZN= C
H ¥ GN

pE(H) eSI(H) .

Defining

u(H)=pE(H)eSI(H) U=C
c

H

u(H)
V(H)!

zV(H) — C
n

Un

n!
zn,

we can repeat the steps leading from multiplicativity and permutation
invariance to Eq. (1) to obtain the second exponential formula

ZN=N! G
dz

zN+1 eU(z). (2)

3.3. Consequences of the Exponential Formulæ

The two expressions obtained for the partition function, one in terms
of W(z) and the other in terms of U(z), show that for every nonnegative
integer N

(1 − p)−N(N − 1)
2 G

dz
zN+1 eU(z)=G

dz
zN+1 eW(z).

It is convenient to eliminate N by the following trick: putting 1 − p
=e−b, (1 − p)−N(N − 1)

2 takes the form of a gaussian integral 1
`2pb

>+.

−.
e−y2

2b
+yN − b N

2.
From the change of variable x=zey − b

2, it follows that

eW(z)=
1

`2pb
F

+.

−.

e−y2

2b
+U(zey −

b

2 ) dy. (3)
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There is no good reason why e−y2

2b
+U(zey −

b

2 ) should be integrable in y along
the full real axis. However, if one expands this function in powers of z,
term by term integration is ok, and for the time being, Eq. (3) is a short-
hand notation for the fact that this term by term integration leads to the
formal power series of eW(z).

4. PRACTICAL PERTURBATIVE EXPANSION

Our aim is to organize the perturbative expansion to make explicit
computations. We would like to make a systematic enumeration of the
terms that appear in perturbation theory.

A typical term in the perturbative expansion is of the form Ai1 j1
· · · Ain jn

to which we associate the sequence i1 j1 · · · in jn, i.e., a word written using
the alphabet [1, N]. For a graph G with adjacency matrix A ij, the product
A i1 j1

A i2 j2
· · · A in jn

is 1 if {i1, j1},..., {in, jn} are amongst the edges of G and 0
else. If l is the number of distinct edges among these n 2-sets, the average is
simply the sum of the Erdös–Renyi weights of all graphs containing these l
edges. This is known to yield OA i1 j1

A i2 j2
· · · A in jn

PER(p)=p l. This average is
invariant under permutations of [1, N], all vertices play the same role in
Tr A(G)k and ||A(G)k||. So we regroup the words i1 j1 · · · in jn in classes
under the action of the permutation group, compute the size of each class
and find a representative in each class. Then we enumerate the representa-
tives and take multiplicities into account.

The idea is the following: suppose that you have a finite word written
using any alphabet (i.e., any set of symbols) on, say, N letters. To each
letter that appears in the word, associate an integer as follows: assign 1 to
the first letter of the word, then assign 2 to the next new (i.e., distinct from
the first) letter appearing in the word, then 3 to the next new (i.e., distinct
from the first and the second) and so on until all letters appearing in the
word have been assigned a number, the highest one being, say, v (v is the
number of distinct letters used to compose the word, which may well be
strictly smaller than the length of the word, because the same letter can
appear more than once). Replacing each letter of the word by its number
leads to a new word, the alphabet being [1, v] … [1, N] this time. The
words obtained by this procedure are characterized by the fact that 1
appears before 2 which appears before 3 and so on. Say that two words in
the original alphabet are equivalent if they yield the same numerical word
by the above procedure. Then each class contains N!

(N − v)! words.
In our case, the original alphabet is already [1, N], and we are led to

the concept of normalized sequences, an elaboration of a procedure intro-
duced in a slightly simpler context in ref. 3.

1260 Coulomb and Bauer



4.1. Normalized Sequences

For an arbitrary sequence i1 j1i2 j2 · · · in jn (with alphabet [1, N]) such
that i1 ] j1,..., in ] jn, we define v=#{i1, j1,..., in, jn}, the number of dis-
tinct vertices in the sequence, and l=#{{i1, j1}, {i2, j2},..., {in, jn}}, the
number of distinct edges in the sequence.

We shall say that a sequence i1 j1i2 j2 · · · in jn is normalized with respect
to <k (Tr A(G)k)mk <k ||A(G)k||nk or more simply with respect to (mk, nk)
if

• n=;k k(mk+nk).

• In this sequence, 1 comes before 2, which comes before 3,... which
comes before v.

• i1 ] j1,..., in ] jn.

• The sequence has a correct structure as regards Tr and || ||. That is,
to Tr A(G)p (mk=dp, k, nk=0) and ||A(G)p|| (mk=0, nk=dp, k) correspond
the constraints j1=i2,..., jp − 1=ip, with the additional constraint jp=i1 for
Tr A(G)p. If more than one term of (mk, nk) is nonzero, then we choose
an arbitrary ordering: increasing k’s, all traces coming before norms. This
allows to decompose the sequence in subsequences, which correspond
either to a trace or a norm, and are accordingly constrained. For instance,
when m3=1 and n1=1, n3=1 are the only nonvanishing elements of
(mk, nk), the sequence has a correct structure if it is of the form
i1 j1i2 j2i3 j3i4 j4i5 j5i6 j6i7 j7 where j1=i2, j2=i3, j3=i1 and j5=i6, j6=i7

(to ||A(G)|| correspond no constraint of structure).

We write Mv, l, (mk, nk) for the number of normalized sequences with v
vertices and l edges. By our previous remarks, the class containing a nor-
malized sequence has N!

(N − v)! members, each of which leads to the same
average. Hence

7D
k

((Tr A(G)k)mk ||A(G)k||nk)8
ER(p)

=C
v, l

N!
(N − v)!

p lMv, l, (mk, nk). (4)

In doing explicit computations, which can be painful, there is a useful
check of the formula, namely a sum rule corresponding to p=1, in which
case only the complete graph contributes, and there is no average to
compute. It is staightforward to check that if G is the complete graph on N
vertices,

Tr A(G)k=(N − 1)k+(−)k (N − 1) ||A(G)k||=N(N − 1)k.
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Hence

C
v, l

N!
(N − v)!

Mv, l, (mk, nk)=D
k

((N − 1)k+(−)k (N − 1))mk (N(N − 1)k)nk.

4.2. Graphical Expansion

Although the interpretation in terms of normalized sequences is
adequate for the purpose of numerical computations, there is another
useful graphical representation of the perturbation series which we present
briefly now.

Expanding Tr Ak=;i1,..., ik
A i1, i2

A i2, i3
· · · A ik, i1

we represent each term
as a colouring of a labelled cycle on k vertices with N colours, vertex j
carrying color ij for j=1,..., k. In the same way, we represent each term in
||Ak||=;i1,..., ik+1

A i1, i2
A i2, i3

· · · A ik, ik+1
as a colouring of a labelled segment

on k+1 vertices with N colours, vertex j carrying color ij for j=
1,..., k+1. The expansion of eSI in powers of tk’s and sk’s, is then repre-
sented as a sum over colorings, with N colours, of labelled graphs whose
connected components are cycles and segments. Pick one term, call it C, in
this sum. Each cycle of length k yields a factor tk/(2k), each segment on
k+1 vertices yields a factor sk/2, there is a factor 1/mk! if there are
mk cycles of length k, and a factor 1/nk! if there are nk segments on k+1
vertices.

The probabilistic average of C (over the set of incidence matrices) is
zero if some edge of C has its two extremities of the same colour. If not, let
e(C) be the number of distinct pairs of colors that appear as extremities of
edges of C. The probabilistic average over the set of incidence matrices
multiplies the former weight of C by pe(C).

Let v(C) be the number of distinct colours in the colouring of C. Say
that terms C and CŒ are equivalent if there is a permutation of [1, N] (the
set of colours) that maps C to CŒ. The equivalence class of C is made of
N!/(N − v(C))! graphs with the same weight. The equivalence class of C

has a graphical representation: starting from C, draw a dashed line between
two vertices if and only if they carry the same color. Then remove the
colors. In this way, obtain a graph with two kind of edges, solid and
dashed. The graphs that appear in this operation have two properties.
First, the solid components are cycles and segments, and the dashed com-
ponents are complete graphs. Second, two vertices cannot be adjacent for
solid and dashed edges at the same time. In lack of a better denomination,
we call graphs satisfying these two conditions ( labelled) admissible graphs.
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The notion of connectivity for admissible graphs treats solid and dashed
edges on the same footing.

Instead of working with labelled admissible graphs, we may use unla-
belled admissible graphs. Then the combinatorial factors (2k for a k-cycle,
2 for a k+1-segment, a factorial for permutations of components of the
same type and size) which take into account only solid edges, are replaced
by the order of the symmetry group of the admissible graph, the group of
permutations of vertices that preserve solid and dashed edges.

Let H be an admissible graph. Two vertices being declared equivalent
if they are connected by a dashed line, let v(H) be the number of equiva-
lence classes of vertices. Two edges being declared equivalent if their
extremities are equivalent as vertices, let e(H) be the number of equiva-
lence classes of edges. Furthermore, we denote by s(H) the order of the
symmetry group of the graph. Then

ZN=C
H

1
s(H)

pe(H) N!
(N − v(H))!

D
k

tmk(H)
k snk(H)

k ,

where the sum is over unlabelled admissible graphs H, mk(H) is the
number of solid k-cycles and nk(H) the number of solid segments on k+1
vertices. See Fig. 2 for the example of Tr A6 and Fig. 3 for the example of
|A(3)3|.

v=3

e=6

v=5

e=5
v=4

e=3
v=3

e=1
v=2

e=6 e=5

v=5

e=4
v=4

e=3
v=4

e=3

e=2

v=6

s=4

v=4

e=5
v=4

e=3
v=3

s=12 s=2

s=2

s=4

s=12s=2

s=6s=4

s=12

s=4 s=2

Fig. 2. Graphical enumeration/interpretation of the contribution of Tr A6 to the partition
function. On the left are drawn all possible identifications, schematized by complete dashed
graphs. On the right identification has been carried out. The numbers of symmetries, vertices
and edges are given for each graph.
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4.3. Exponentiation

Computations on a sheet of paper are more economical using admis-
sible graphs, but systematic machine enumeration is best carried out using
normalized sequences.

If is not difficult to convince oneself that the notion of connectedness
of normalized sequences or of admissible graphs is the same, and coincides
with the notion of connectedness used to establish Eq. (2). We infer that

U(z)=z+C
c

H

1
s(H)

pe(H)zv(H) D
k

tmk(H)
k snk(H)

k ,

where ;c
H is the sum over unlabelled connected admissible graphs or

equivalently that

U(z)=z+ C
v, l, {m•, n•}

zvp l t̃m•
• s̃n•

•

m•! n•!
Mc

v, l, {m•, n•},

where t̃m•
• s̃n•

• — <k ( tk
2k)mk ( sk

2 )nk and Mc
v, l, (mk, nk) is the number of normalized

connected sequences.

5. FINITE CONNECTIVITY LARGE N BEHAVIOUR

Our aim is to use the identities Eqs. (1) and (2) and their consequence
Eq. (3) to derive mean field type identities valid in the limit N Q .,
pN, tk, sk being N independant, or more generally having finite limits for
large N. It is customary to define a — limN Q . pN.

5.1. Caveat

In this regime, when tk=sk=0 for all k’s (the Erdös–Renyi model),
the event that a graph contains a component with much more edges than
vertices has a vanishingly small probability, and the connected components
look locally like trees. This is called the dilute regime. In particular, the
complete graph (a caricature of a non-dilute graph) has a negligible weight
in the dilute regime.

We are looking for an analogous regime for the perturbed Erdös–
Renyi model. However, in that case, the complete graph has weight

w=qN(N − 1)/2e;k
tk
2k ((N − 1)k+(−)k (N − 1))+;k

sk
2 N(N − 1)k

.

Compare this to a union of isolated vertices (a caricature of a dilute graph),
which has weight w=1. Consider for instance, the case when there is only
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s=1
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v=4
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Fig. 3. Graphical representation for the coefficients of s3.

one nonvanishing perturbation parameter, say s3. The two weights are
equal if qe s3(N − 1)=1. That this crude balance gives the correct qualitative
frontier between a dilute regime and a dense regime is confirmed by
numerical simulations.

If p — a/N and s3 < 0, the complete graph is indeed strongly sup-
pressed (in fact much more drastically than for the pure Erdös–Renyi
model). However, if s3 > 0, the weight of the complete graph submerges the
weight of dilute configurations.

To summarize, the following discussion makes sense only if SI does
not become positive and large (± N2) for non-dilute configurations. An
easy way to ensure that is to take the sign of all perturbations negative.
Another possibility would be to take only a finite number of nonzero per-
turbations, and then impose that the dominant one be negative.

5.2. Main Equations

With these observations in mind, we start from

ZN=N! G
dy

yN+1 eU(y)

=(1 − p)
N(N − 1)

2 N! G
dx

xN+1 eW(x)

and

eW(x)=
1

`2pb
F

+.

−.

e− z2

2b
+U(xez −

b

2 ) dz.
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Recall that p=q/(1+q)=1− e−b. We fix p=pN — a/N where a is a con-
stant, and make changes of variables y Q y/p, x Q x/q in the above
integrals. In the expansions

U(y/p)=C
c

H

1 a

N
2E(H) − V(H)

eSI(H) yV(H)

V(H)!

and

W(x/q)=C
c

H

1 a

N − a
2E(H) − V(H)

eSI(H) xV(H)

V(H)!

the sum is over connected graphs, and by Euler formula, E − V=L − 1
where L \ 0 is the number of loops. Hence we may write formaly

U(y/p)=
N
a
u(y)+o(N) W(x/q)=

N
a
w(x)+o(N),

where u(y)=;T eSI(T) yV(T)

V(T)! and w(x)=;T eSI(T) xV(T)

V(T)! are sums over trees
(connected graphs with L=0). If we use a naı̈ve version of the saddle point
approximation and write ZN=eNF+o(N), we find

F= − 1 − log
yg

a
+

1
a
u(yg) (5)

F= −
a

2
− 1 − log

xg

a
+

1
a
w(xg) (6)

w(x)= −
ẑ2

2
+u(xe ẑ), (7)

where the xg, yg, and ẑ are appropriate saddle point values:

a=xgwŒ(xg)=yguŒ(yg) ẑ=xe ẑuŒ(xe ẑ).

We end this section with the following remarks. The average number
of edges is more or less the variable conjugate to p. More precisely, the
average number of edges is

q
“

“q
log((1 − p)−N(N − 1)/2 ZN).
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We infer that in the thermodynamic regime with N Q . and pN=a/N, the
average number of neighbors of a given point (i.e., 2/N times the average
number of edges) is

c=a+2a
“F
“a

. (8)

For the pure Erdös–Renyi model, the weights form a probability distribu-
tion, ZN=1, F=0, and c=a. In the perturbed models, a is not so easily
measured on the graph, and only the parameter c has direct physical
meaning. From the point of view of quantum field theory, it is natural to
view a as the bare connectivity and c as the physical connectivity. For each
coupling constant tk or sk, it would be desirable to find analogous physical
quantities that first, one can compute directly on a random graph without
knowing a priori the sampling measure and that second one can reduce
tk or sk to first order in perturbation theory. This is very ambiguous and
we have not found an elegant way to select such physical observables
systematically.

5.3. Discussion

We have seen before that a dilute regime for the perturbed Erdös–
Renyi model with fixed values of the tk’s and sk’s cannot exist if SI becomes
large positive for graphs with many loops. Here we discuss a related limi-
tation even if one considers only loopless graphs.

Instead of considering the complete graph, look at the star shaped tree
on n vertices, whose adjacency matrix we denote by S, with a center con-
nected to the n − 1 other vertices. From Tr S=0, ||S||=Tr S2=2(n − 1),
||S2||=n(n − 1), and S3=(n − 1) S, it is easy to compute recursively that
Tr S2k+1=0 and ||S2k+1||=2(n − 1)k+1 for k \ 0, and that Tr S2k=2(n − 1)k

and ||S2k||=n(n − 1)k for k \ 1. As an example, consider again the case
when there is only one nonvanishing perturbation parameter, say s3. The
contribution of star shaped trees to w is ;n

1
(n − 1)! e s3(n − 1)2

xn. As all trees give
a positive contribution to w, no compensation is possible and we conclude
that if s3 > 0, the series for w has a vanishing radius of convergence. So it is
meaningless to deform contours, and Eq. (6) is meaningless as well. Then
so is Eq. (5) because analyticity of u(y) at small y implies analyticity of
w(x) at small x via Eq. (7). On the other hand, if s3 < 0, the star-shaped
trees of large size are very strongly suppressed. Let us note however as
shown in the next section that, in the realm of formal power series, Eq. (7)
describes the correct combinatorial relationship between u and w even if
both series have a vanishing radius of convergence.
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More generally, if SI(T)/V(T) is bounded above (an easy way to
ensure that is to take the sign of all perturbations negative, another possi-
bility would be to take only a finite number of nonzero perturbations, and
then impose that the dominant one be negative), w is analytic near the
origin. Indeed, if SI(T)/V(T) [ y for all trees, using the fact that there are
nn − 2 labelled trees on n vertices, we see that 0 < wn

n! [ nn − 2

n! eyn, leading to a
nonzero radius of convergence.

For instance, when the sign of every perturbation is negative, the
radius of convergence is a nonincreasing function of the tk’s and sk’s: it
gets larger and larger as the tk’s and sk’s get more negative. To see that it
remains finite, consider the linear graph on n vertices, whose adjacency
matrix we denote by L. For this graph, for fixed k and large n, Tr Lk and
||Lk|| grow at most linearly with n: they count k steps walks, and if the
starting point is given, at each step there are at most two choices, so there
is the obvious upper bound n2k. There are n!/2 ways to label the linear
graph (the symmetry group is of order 2). So the contribution of the linear
trees to w decreases at most geometrically with the size. As all trees give a
nonnegative contribution, w has its first singularity on the real positive
axis, and at a finite distance.

In the situation when w has a finite radius of convergence, we
conclude that there is a forest-like regime for the perturbed Erdös–Renyi
model that extends the forest-like regime of the pure Erdös–Renyi model,
and that it is described by Eqs. (5)–(7), at least in the small a phase. We
shall elaborate on this point in the sequel.

5.4. Combinatorial Remarks

As we have seen before, the above formulæ for the free energy rely on
crucial assumptions. What we would like to show in this subsection, before
embarking on a detailed discussion of analytic features of these equations,
is that the combinatorics embodied in Eq. (7) is correct. Suppose that
we forget about the random graph model for a moment, and consider
instead a random forest model, w being the generating function for random
weighted trees.

Expand the function u(xez ) in powers of z: u(xez)=;l
zl

l! (x d
dx) l u(x).

It is well-known from quantum field theory that the formal expansion of

F dz e
1
(

( − z2

2 +u(xez))

is a weighted sum of all connected Feynmann graphs. The weight of a
Feynmann graph is computed as follows: each edge gives a factor (
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(propagator), each vertex of degree l gives a factor (
−1(x d

dx) l u(x) and
finally one divides by the order of the symmetry group of the graph. The
logarithm is given by the same sum, but restricted to connected graphs. For
connected graphs, the power of ( is the number of loops minus 1, so the
dominant contribution in the small ( limit restricts the sum to connected
loopless graphs, i.e., trees. On the other hand, the small ( limit is given by
the saddle point approximation, i.e., Eq. (7). So w is a sum over all trees,
each vertex of degree l giving a factor (x d

dx) l u(x).
But u(x) itself is a tree generating function, so (x d

dx) l u(x) is the gen-
erating function for trees with l marked vertices (a vertex can be marked
more than once). So Eq. (7) means that to construct w, one takes arbitrary
trees, (call them naked trees) and then blows up every vertex of degree l
into a new tree with l marked vertices from which naked edges emerge.
Note that a naked vertex can be blown up in a trivial tree, corresponding
to the term x in u(x)=x+ · · · .

As we have emphasized before, if T is a tree, each term t in the expan-
sion of eSI(T) in terms of matrix elements of the adjacency matrix A of T
defines a subgraph of T, i.e., a forest with the same vertex set as T, edge
{i, j} ¥ E(T) being present in the forest if and only if the term t contains
the factor A ij or Aji. But the connected components of the forest being
given, one reconstructs w by connecting the different components with
appropriate edges. This is exactly the procedure described by Eq. (7) if w is
the generating function for eSI(T) and u the one for eSI(T).

5.5. Effective Model

If we have the original model in mind, each uk is itself a highly non-
trivial kind of partition function. However, if we take each uk as an
independent parameter, we can make a rather general analysis. In fact,
there is a simple model for which the uk ’s are the fundamental micro-
scopic parameters in the sense that they appear directly in the definition
of the weights. We call this model an effective model for the following
reasons.

In quantum field theory, the term ‘‘effective’’ often means that one
renounces to deal with all observables of a system and only concentrates
on certain degrees of freedom, so that the other ones can be averaged.
For instance, to compute the long distance behaviour, one first averages
over the short distance fluctuations. We are going to do something anal-
ogous here: we renounce to observe the local structure of connected
components and are only interested in the distribution of their size. So
instead of keeping track of the weight of each detailed connected compo-
nent, we can as well give all components of a given size the same weight,
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namely the average weight given by the original model for components of
that size.

Now, to the precise definition. Choose parameters c1, c2,... and define
an effective weight u (eff )(H)=pE(H)ck for any connected graph H of size k,
and assume multiplicativity, so that for an arbitrary graph u (eff )(H)=
pE(H) <k cnk(H)

k where nk(H) is the number of components of size k of H.
If we trade ck for lkck, we multiply the weight u (eff )(H) by a trivial factor
lV(H) so we shall assume that the ck’s are normalized by c1=1 (the special
case c1=0 would need a separate treatment). Define the corresponding
effective weight w (eff )(G)=qE(G) ;H, E(H) … E(G) u (eff )(H) p−E(H), where the
sum is over all graphs on the same vertex set as G whose edge set is a
subset of that of G. Note that contrary to the weight u (eff ), the weight
w (eff )(G) does in general depend on the detailed structure of the graph, and
not only on the sizes of connected components. Our interest however is in
the distribution of sizes of connected component of graphs of large size
N Q . sampled using the weight w (eff ). Following the same steps as for the
original model, we find that this distribution can be obtained in the ther-
modynamic limit from tree generating functions u (eff ) and w (eff ) satisfying
the very same coupled equations (5)–(7) as the original u and w. The coef-
ficients of u (eff ) are very simple in terms of c1, c2,... because all components
of the same size have the same weight, and by Cayley’s theorem there are
kk − 2 trees on k vertices. Hence u (eff )=;k \ 1

kk − 2

k! ck yk. Hence if one sets
ck=k2 − k ;T ¥ Tk

eSI(T) where the sum is over trees of size k, the effective
model has the same component size distribution as the original one.

For all these reasons, we shall remove in the sequel the superscript (eff )

from u (eff ) and w (eff ), even if we sometimes keep the distinction between the
weights u and w and the effective weights u (eff ) and w (eff ). Accordingly, we
shall analyse Eqs. (5)–(7), which involve only the component size distribu-
tion, without making explicitly the distinction between the original model
and the effective model.

5.6. Connected Components and Percolation

We return to the finite N arbitrary p case to start the argument. As Wk

is, modulo an overall multiplicative factor, the total weight of connected
graphs of size k, we infer from Eq. (1) that the mean number of connected
components on k vertices is

Nk=
Wk

ZN

“ZN

“Wk
=

N!
k! (N − k)!

Wk
ZN − k

ZN
(1 − p)

N(N − 1) − (N − k)(N − k − 1)
2 .
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Taking into account that when pN=a, p(N − k)=a(1 − k/N), we find
that in the dilute regime, for fixed k and N Q ., ZN − k

ZN
’ e−k(F+a “F

“a
) and

(1 − p)
N(N − 1) − (N − k)(N − k − 1)

2 ’ e−ka so that

Nk/N ’
wk

k!
ak − 1e−k(a+F+a “F

“a
).

As expected, in this regime only trees contribute thermodynamically to the
finite components.

From these equations for the abundance of connected component of
each size, we can easily derive a percolation criterion. Indeed, by construc-
tion, ;k kNk/N=1, but what about the approximate sum

C
k

k
wk

k!
ak − 1e−k(a+F+a “F

“a
)?

For each fixed k and N Q ., the kth term is a good approximation to
kNk/N, but there is problem of inversion of limits. Physically, the approx-
imate sum counts the fraction of points in components of finite size, so it
is [ 1.

If we assume that u is analytic at small y, then F is analytic and small
at small a and w is analytic and small at small x. Moreover, xg is an
increasing function of a at small a. From Eq. (6), we infer that F+a “F

“a

=−a − log x*
a or equivalently, ae−a − F − a “F

“a=xg. Then ;k k wk
k! ak − 1e−k(a+F+a “F

“a
)

=x*
a wŒ(xg)=1 for small enough a. However, it may happen that as a

function of a, xg=ae−a − F − a “F
“a is non-monotonic. There may be a value ac

such that xg increases in the interval [0, ac] but then starts to decrease, so
that xg(a) [ xg(ac) in some interval strictly containing [0, ac]. One could
build models where xg(a) has several oscillations, but in the sequel, we
concentrate on the first. For a given a, denote by ā [ ac the small solution
to the equation xg(a)=xg(ā). Then we obtain the more general result that
finite components occupy a fraction x*

a wŒ(xg)=ā
a [ 1 of the sites in the

system. If a > ac, something else than finite components, in fact on general
grounds one single giant component, occupies a fraction 1 − ā

a vertices.
Thus, the percolation criterion is that ae−a − F − a “F

“a is maximum at a=ac. So
the transition point is when

a+2a
“F
“a

+a2 “
2F

“a2=1. (9)

The first two terms yield simply the true average connectivity c=a+2a “F
“a ,

it would be nice to have a direct physical interpretation of the third term
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a2 “
2F

“a2 . This percolation criterion is expressed solely in terms of the free
energy as a function of a. But it can also be related to analytic properties
of w. Indeed, the relevant saddle point equation is a=xgwŒ(xg). As
a approaches ac, xg reaches a maximum, so that the xg derivative of
xgwŒ(xg) has to get large, diverging at a=ac. If ac is finite, this means that
w and wŒ are finite at a=ac, but wœ is infinite. If the coefficients of w are
nonnegative,3 this means that xg(ac) is the radius of convergence of w.

3 This should be the case in statistical mechanics, and it is true by construction for our initial
model as long as the parameters are real.

From xg(ac), we recover ac itself by the general saddle point equation
a=xgwŒ(xg).

Suppose now (we shall soon argue that this is true in many cases
including interesting ones) that even if xg(ac) is the radius of convergence
of w, the function u is not singular at yg(ac). Hence u allows to compute
the free energy F and show that it is analytic in some interval strictly con-
taining ac. From that point of view, we observe that the saddle point
equations imply that xg=yge−a=yge−y*uŒ(y*) from which the percolation
criterion, i.e., the determination of the maximum of xg becomes

yg “a

“yg=yguŒ(yg)+yg2uœ(yg)=1. (10)

In the same spirit, the true average connectivity can be expressed as
c=yguŒ(yg)+2 − 2 u(y*)

y*uŒ(y*)
.

In general, if u has nonegative coefficients and Eq. (10) has a solution
strictly within the disc of convergence, one can go through the above
argument in the reverse order to prove the existence of a percolation tran-
sition with the announced characteristics. This is the case for instance if u is
an entire function with nonnegative coefficients, or more generally if u is
function with nonnegative coefficients such that uœ is unbounded when the
argument approaches the radius of convergence. It is worth to observe that
if the y expansion of u has nonnegative coefficients, then the same is true
of the x expansion of w. Indeed, from Eq. (7) and the corresponding saddle
point equation we infer that xwŒ(x)=ẑ. Hence as functions of x, w, and ẑ
have the same singular points, and

wŒ(x)=exwŒ(x)uŒ(xexwŒ(x)).

Expand both sides of this identity to see that w1=1 and that wk+1 −uk+1

is a polynomial in u1=1, u2,..., uk, w1=1, w2,..., wk with nonnegative
coefficients.
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In the case of our original model, the situation is more tricky. We
know by construction that the x expansion of w has nonnegative coeffi-
cients, but to ensure the existence of a dilute regime, the same cannot be
true in general of u. In the sequel, we shall see that in perturbation theory
at any finite order, we are in the following situation: the coefficients of u

may be negative, but nevertheless uŒ(y) is analytic (in fact a polynomial)
and positive in a interval strictly containing 0 and a solution of Eq. (10).
Then our previous arguments can be made rigorous and there is a (per-
turbative) percolation transition with the announced characteristics. We do
not know if this argument can be extended outside the realm of perturba-
tion theory. The numerical simulations are encouraging, but the behaviour
of some perturbative series is puzzling. Before discussing that, let us con-
sider three simple but significant examples.

6. THREE EASY EXAMPLES

6.1. The Case of the Erdös–Renyi Model

Let us recover the Erdös–Renyi model in this framework. In that case,
by construction, U(y)=u(y)=y and yg=a. Equation (5) leads to F=0
for all values of a (no surprise, for the Erdös–Renyi model the weights are
normalized as a probability distribution). Then Eq. (7) leads to ẑ=xe ẑ, and
from the Lagrange inversion formula,

ẑ=C
k

kk − 1

k!
xk w=C

k

kk − 2

k!
xk

which are the classical (rooted and non-rooted) tree generating functions
(in fact, this gives a proof of Cayley’s formula for the number of trees).
Note that if we use naively Eq. (6), we can deduce that F=0 only for
a [ 1.

The number of connected components of size k is Nk ’ N kk − 2

k! ak − 1e−ka,
which is well-known to be true for fixed k and large N, for any value of a.
Notice again that the use of u plays a crucial role in our approach. Using
only w, we would get the component distribution only for a [ 1. In fact,
for the corresponding random forest model (which is thermodynamically
equivalent to the random graph model for a [ 1) limN Q . Nk/N is
kk − 2

k! ak − 1e−ka for a [ 1 but is nonanalytic at a=1, which is the percolation
transition.

The total number of points belonging to components of size k is
’ N kk − 1

k! ak − 1e−ka.
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For a [ 1, ;k
kk − 1

k! ake−ka=a, but for a > 1, ;k
kk − 1

k! ake−ka=ā, where
ā is the smallest solution to ae−a=āe−ā. The giant component occupies
’ N(1 − ā/a) sites.

6.2. The Nested Erdös–Renyi Model

As another example, suppose that u (eff )(H)=pE(H) for all graphs,
i.e., that ck=1, k \ 1. Then w (eff )(G)=qE(G) ;H, E(H) … E(G) 1=(2q)E(H).
Both weights describe the Erdös–Renyi model, but with different values for
the probability of an edge. Going to the large N finite connectivity limit,
we find u=;k \ 1

kk − 2

k! yk, and from our previous analysis of the Erdös–
Renyi model, we find that yuŒ(y)=;k \ 1

kk − 1

k! yk is the Lambert function
L(y), the solution of L(y) e−L(y)=y analytic close to 0 and vanishing at 0.
Hence ẑ=L(xe ẑ), so that ẑe−ẑ=xe ẑ. Hence 2ẑ=L(2x). Moreover, from
u(y)=L(y) − L(y)2

2 we find 2w (eff )(x)=L(2x)− L(2x)2

2 . So we recover the
doubling of the edge probability when passing from the u (eff ) weight to the
w (eff ). The u (eff ) percolation transition is at a=1 but the w (eff ) percolation
transition occurs at a=1/2. Note that the equation yguŒ(yg)=L(y)=a

cannot be solved for a \ 1, but that the free energy F=a/2 and the true
connectivity c=2a have an analytic continuation for larger a’s. That this
analytic continuation is the true value of F cannot in principle be decided
from our arguments (we would have to do one more step of the same con-
struction to view the u (eff ) weight itself as a composite weight). But this does
not prevent us from finding and analysing correctly the w (eff ) transition,
because it occurs strictly before the u (eff ) transition.

6.3. The Matching Model

When uk=0 for k \ 2 we recover the Erdös–Renyi model, so let us try
the next degree of difficulty, when uk=0 for k \ 3 but u2 is a free param-
eter. Thus w (eff )(G) is the generating function for a gas of disjoint egdes
on G, that is, the generating function for (all, non-necessarily maximal)
matchings on G. This is a rather natural weight from the point of view of
combinatorics. It is plain that the detailed structure of G is relevant, and
not simply the size of its connected components. On the other hand, the
u (eff ) weight is nonzero only for a finite number of connected graphs, so
that the function U (eff ) is simply U (eff )=z+qu2

z2

2 and ZN=N! ? dz
zN+1 ez+qu2

z2

2 .
In such a simple case, the saddle point approximation applies without
subtleties, and we retrieve, in the large N finite connectivity limit, the
expected equations. The function w(x) does not seem to be an elementary
function. The small x and the perturbative small u2 expansions are
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straightforward but become quickly ugly. However from u=y+u2
y2

2 , we
can easily find the percolation criterion. Parametrizing u2=1 − yc

2y2
c

(with
yc ¥ ]0, 1] for positive u2 ) and using Eq. (10), one finds that at the perco-
lation threshold:

yg=yc ac=
1+yc

2
cperc=

1+yc

2
+

1 − yc

1+yc
.

So ac decreases from 1 to 1/2 when u2 grows, but the physical average
connectivity cperc increases from 1 to 3/2. The special case u2=1 is of
special combinatorial significance, because the weight w (eff )(G) counts the
number of configurations of nonadjacent edges on G. Then yc=1/2,
ac=3/4 and cperc=13/12. Consequently, xc=

1
2 e−3/4, from which we can

derive a result of direct combinatorial significance:

1
N!

C
T ¥ TN

# matchings of T ’ C st (2e3/4)N

N5/2 ,

to be compared with 1
N! ;T ¥ TN

1=NN − 2

N! ’ 1
`2p

eN

N5/2 . Hence, if we put the
uniform probability law on labelled trees of size N, the average number of
matchings on a random tree of size N behaves like C st( 16

e )N/4.

7. BACK TO THE ORIGINAL MODEL

7.1. Finite Orders in Perturbation Theory

Remember that we established in Section 4.3 that

U(z)=z+C
c

H

1
s(H)

pe(H)zv(H) D
k

tmk(H)
k snk(H)

k ,

where ;c
H is the sum over unlabelled connected admissible graphs (we

could equivalently reason in terms of normalized connected sequences).
Consider the coefficient of <k tmk

k snk
k : it is the sum over admissible graphs

with mk solid k-cycles and nk solid segments on k+1 vertices. There is only
a finite number of ways to join these fixed solid components with any
number of complete dashed graphs. So the coefficient of <k tmk

k snk
k is a

polynomial in p and z. A fortiori, if we restrict to admissible graphs H such
that v=l+1, which are the ones contributing to u, the sum is finite, and
the coefficent of <k tmk

k snk
k in the perturbative expansion of u(y) is a poly-

nomial in y.
Note that u(y)=y+O(y2), so yuŒ(y)=y+O(y2) and yuŒ(y)+y2uœ(y)

=y+O(y2), where the O(y2) vanish to zeroth order in perturbation
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theory. Hence to any finite order in perturbation theory, yuŒ(y) is analytic
and increasing up in a large value of y, but yuŒ(y)+y2uœ(y)=1, the signal
of the percolation transition, occurs at a value of y of order 1. Hence
generically to any finite order in perturbation theory our initial model
exhibits a percolation transition described by our previous results. In
the following we shall make explicit perturbative computations of the
free energy, the percolation threshold, etc, for the special case tk=0,
sk=2mdk, 3. To compare with the prediction of the Molloy–Reed criterion,
we need first to show how to compute it in perturbation theory for our
model.

7.2. Moments of the Degree Distribution, Molloy–Reed’s Criterion

By degree distribution of a given labelled graph G on N vertices is
meant the sequence (n0(G), n1(G),..., nN − 1(G)) where n i(G) is the number
of vertices in G with exactly i neighbours. For fixed N, the Molloy–Reed
model concentrates on the set of all those labelled graphs with a fixed
degree distribution (n0, n1,...) and gives them uniform probability, see
ref. 6. This represents a microcanonical point of view in the sense that the
degree distribution is fixed and can not fluctuate. For a grand canonical
presentation of the same idea, see ref. 2. If, for large N, (n0/N, n1/N,...)
converges (in a sense made precise by Molloy and Reed) to a probability
distribution (f0, f1,...), a limiting random graph model is obtained, which
depends only on (f0, f1,...) and not on the details of the approximating
sequence (n0/N, n1/N,...). We now recall the percolation criterion for the
Molloy–Reed model with arbitrary degree distribution.

For a given graph G, define k (q)(G) as the following average over
vertices of G:

k (q)(G) —
1
N

C
N

i=1
li(G)q.

For instance, when q=1, Nk(G)=2E(G).
The statistical average OkqP — 1

;G w(G) ;G w(G) k (q)(G) is called the qth
moment of the degree distribution. Note that in the Molloy–Reed model,
all graphs have the same degree distribution, so that OkqP=k(q)(G) for all
G in the relevant statistical ensemble.

The Molloy–Reed percolation criterion states that the Molloy–Reed
random graph has a giant component if and only if the two first moments
of the degree distribution verify Ok2 − 2kP > 0. For the Erdös–Renyi model,
OkP=a, Ok2P=a(a+1), leading to the percolation threshold a=1.
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Our present purpose is to compute in perturbation theory the first
moments of the degree distribution for our model. In principle, it is pos-
sible to compute OkqP for any q \ 1. In the definition

OkqP=
1

NZN
C

G ¥ GN

eSI(G)w0(G) C
i, j1,..., jq

aij1
· · · aijq

of the qth moment, eSI(G) ;i, j1,..., jq
aij1

· · · aijq
may be viewed as the x deri-

vative taken at x=0 of

exp(S(q)
I (G, x)) — exp 1SI(G)+x C

i, j1,..., jq

aij1
· · · aijq

2 .

Seen as a new term of interaction, this exponential is still multiplicative and
permutation invariant. We thus follow the steps which led us to Eq. (2) (see
Section 3.2) to prove that OkqP is the derivative taken at x=0 of

(N − 1)!
ZN

G
dz

zN+1 eU(q)(z)=
1
N

Z (q)
N

ZN
,

where Z (q)
N is the partition function of the model obtained from the original

model by replacing SI by S (q)
I . In the large N limit, we proceed just as in

Section 5.2 to show that Z (q)
N =eNFq+o(N), Fq being the new free energy:

Fq=−1 − log
ya

q
a +1

a u
(q)(ya

q ). In this expression, u (q) is the tree generating
function for the new model and ya

q is the corresponding saddle point.
We now take the derivative and put x=0 to yield

OkqP=
1
a

C
T

C
i, j1,..., jq

eSI(T)aij1
· · · aijq

yV(T)

V(T)!
.

Just as we did in the original model, we can use normalized sequences
(or admissible graphs) to give a combinatorial interpretation of the
overlined term. A sequence i1 j1 · · · in jn is said to be normalized with respect
to {mk, nk}, q if

• n=q+;k k(mk+nk),

• 1 comes before 2, which comes before 3,... which comes before the
number v of distinct elements among the sequence,

• i1 ] j1,..., in ] jn,

• it has a correct structure. That is, the sequence of the 2(n − q) first
terms has a correct structure as regards Tr and || || and, moreover,
in=in − 1= · · · =in − q+1.
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We put Mv, l, (mk, nk), q for the number of such sequences. Finally, the qth
moment of the degree distribution is

OkqP=
ya

a
+

1
a

C
v, {m•, n•}

t̃m•
• s̃n•

•

m•! n•!
M t

v, (mk, nk), qyav. (11)

In particular, the Molloy–Reed’s criterion can, in principle, be com-
puted by means of this formula: it involves normalized sequences (of type
(mk, nk)) to which are concatenated subsequences of 2 elements for OkP or
3 elements for Ok2P.

We now study a simple example in which all quantities mentioned
above can be explicitly (although perturbatively) computed.

7.3. Perturbation Theory: The Example tk=0, sk=2mdk, 3

This is the simplest nontrivial case for which sk ] 0. The weight of a
graph G is

w(G)=pE(G)(1 − p)−E(G) em ; ijkl aijajkakl.

According to our previous discussion, we assume that m < 0. To get the
percolation criterion, we use the general theory exposed in the preceding
section. We set M t

n, m — Mc
n, n − 1, m. The definition of yg is yguŒ(yg)=a, i.e.,

yg+C
n, m

nygn mm

m!
M t

n, m=a.

In fact, we were not able to find an expression of M t
n, m valid for all

n, m, and we rely on a direct enumeration, up to order 6, of the normalized
sequences, see Table I for the first five orders. At this moment, a fully
automated enumeration algorithm starting from scratch and working in a
reasonnable time would need too much memory. To have some control
over possible errors coming from human input, we have checked our
results with two independent algorithms. On a 2.5 Ghz processor, the
computation of the fifth order takes about 5 minutes, but the sixth order
takes about 8 hours: the growth in complexity is extremely rapid, at least
factorial.

Up to third order in m, ya takes the following form:

ya=a − 2a2(a+1)(2a+1) m+2a2(−1 − 17a − 56a2 − 57a3

− 15a4+4a5) m2 − 4
3 a2(1+81a+788a2+2485a3+3303a4

+1808a5+159a6 − 126a7+8a8) m3+ · · · .
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Table I. M t
n, m for m=1,..., 5

n0m 1 2 3 4 5

2 1 2 4 8 16
3 2 28 248 2032 16352
4 1 86 2236 44024 789616
5 108 7720 316784 10603040
6 66 14120 1152952 66713920
7 16 15424 2558624 248562304
8 10284 3781264 619455952
9 3888 3851664 1101864640

10 640 2698504 1444605680
11 1249712 1410932864
12 345600 1019814768
13 43264 531798240
14 189678720
15 41472000
16 4194304

The percolation criterion states that there exists a giant connected
component if yguŒ(yg)+yg2uœ(yg) > 1 and that, on the contrary, all con-
nected components are of finite size if yguŒ(yg)+yg2uœ(yg) < 1. With
u(y)=y+;n, m M t

n, m
m

m

m! yn, the boundary between the percolating region
and the non-percolating region is a curve in the (a, m) plane, of equation:

a − 1+C
n, m

n(n − 1) ygn mm

m!
M t

n, m=0. (12)

We can solve this equation for a as a perturbative series in m. Up to
order 5, this yields

aperc=1 − 26m+336m2 −
9500

3
m3+

49718
3

m4 −
991328

5
m5 −

41436164
15

m6+· · · .
(13)

Putting a=aperc in formula (8) we find that, at the percolation
threshold, the mean number of neighbours of a given vertex is

cperc=1 − 10m − 50m2 −
652
3

m3 −
19786

3
m4 −

3498268
15

m5 −
67025012

9
m6+ · · · .

(14)

In the preceding section, we saw how to infer the moments of the degree
distribution from enumeration of the appropriate normalized sequences.
Tables II and III show the result of these enumerations for OkP and Ok2P.
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Table II. Enumeration of the Sequences Appearing in OkP

n0m 1 2 3 4 5

2 2 4 8 16 32
3 12 120 1008 8160 65472
4 18 692 14952 276560 4836768
5 8 1600 80800 2902784 91337088
6 1844 225648 14935280 779078400
7 1080 375408 45982304 3849121728
8 256 392360 93526304 12533947744
9 255312 131789760 28896796992

10 95040 130610064 49053023200
11 15488 89956640 62460050560
12 41178240 59854882464
13 11291904 42704264192
14 1404928 22060944640
15 7812720000
16 1698693120
17 171051008

Table III. Enumeration of the Sequences Appearing in Ok 2P

n0m 1 2 3 4 5

2 2 4 8 16 32
3 20 184 1520 12256 98240
4 44 1336 27440 500320 8725184
5 38 3812 171208 5937552 184842528
6 12 5676 546752 33681040 1713610432
7 4804 1060024 113992144 9088370528
8 2212 1341416 257520720 31755109024
9 432 1127280 410985696 79109699392

10 611232 474725904 146874463968
11 194480 397440176 207952308800
12 27648 236315376 226475616384
13 94941392 189140564736
14 23156224 119320803648
15 2592000 55138687200
16 17635164160
17 3491452928
18 322486272
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We compute OkP (either by means of formula (8) or using the enu-
meration [2] together with Eq. (11)) and Ok2P as perturbative series in m,
and then solve the equation Ok2 − 2kP=0 in a to find

aMR=1 − 24m+274m2 −
7324

3
m3+

28708
3

m4 −
577988

3
m5+ · · · ,

which does not coincide with aperc.

8. DISCUSSION AND PERSPECTIVES

In this paper, we have studied a class of perturbations of the Erdös–
Renyi model which introduce correlations between the edges: the weight of
a graph depends on the abundance of certain geometric features.

To solve this model, we have introduced an auxiliary model whose tree
generating function u was expected to present better convergence properties
than the original one w. The free energy F in the large N limit has been
determined and a percolation transition has been established by means of
an effective model: the percolation criterion is given by an equation, either
on F or on u. We also have formulæ for the degree distributions.

On the basis of these general results we give explicit formulæ for the
above quantities in the particular case where all parameters but one vanish.
These perturbative results raise some crucial questions. Indeed, we hope
that the thermodynamical model makes sense for m < 0 but that m > 0 has
to be discarded because it gives too much weight to strongly connected
configurations and cannot be treated like a diluted, tree-like, regime. In
fact, up to sixth order, it is not so clear that the series for aperc is actually
convergent for negative m, because its general term increases very fast.
However, as suggested by the fifth and sixth terms, we hope that the
following terms may all be negative, the series hence being possibly sum-
mable when m < 0. This interpretation is supported by the form of the per-
turbative expansion (14) of the physical connectivity parameter cperc, which
seems much better behaved, with negative coefficients for orders > 0.

We also have computed the Molloy–Reed criterion, which does not
give an appropriate description of the percolation transition in this model.
The m expansion of aMR seems to present the same pathology as aperc.
A possibility is that this series is indeed divergent for negative m: the equa-
tion Ok2 − 2kP may not admit any solution in a as soon as m < 0. Another
possibility is that, just as for aperc the series may stop to alternate at higher
orders. Anyway, it would be desirable to determine a class of models for
which the Molloy–Reed criterion is valid, and we believe that a minimal
requirement may be a kind of locality. Indeed, the Molloy–Reed criterion
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concentrates on the first two moments of the degree distribution, which are
local quantities in the sense that k (q)(G) can be computed as soon as the
immediate environment of each vertex is known, independently of how
the vertices are connected to each other. Even in the simple model that we
used to illustrate perturbation theory, this information is not sufficient to
compute the weight of a graph: one must also know the immediate envi-
ronment of the first neighbours of each vertex.

Finally, we also believe that a more thorough understanding of degree
correlations induced by attacks deserves a systematic treatment.
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